
Entire Connection

Application Programming Interface

Version 4.3.2

This document applies to Entire Connection Version 4.3.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes
or new editions.

© February 2003, Software AG
All rights reserved

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents
............... 1Application Programming Interface
.................... 1Glossary
................. 2General Information
.............. 3Synchronous and Asynchronous Calls
................. 4Overview of API Calls
................... 5Initialization
................. 7Opening a Session
.................. 8General Control
................... 10Screen Data
.................. 13Data Transfer
................ 17Tasks and Procedure Files
.................. 20Closing a Session
.................. 20Other Methods
................... 21Other Events
.................... 21Key Codes
................... 21Error Codes

i

Application Programming InterfaceEntire Connection Version 4.3.2

Application Programming Interface
Using the application programming interface (API), you can invoke Entire Connection functions directly
from a program. An ActiveX control provides a common interface for development with both Visual
Basic and C++.

This section provides the following information:

Glossary
General Information
Synchronous and Asynchronous Calls
Overview of API Calls
Other Events
Key Codes
Error Codes

It is assumed that you are familiar with ActiveX controls (with either Visual Basic or C++) and Entire
Connection.

This description should be read in conjunction with the sample code which is provided on the Entire
Connection CD-ROM.

Glossary

API Functionality available to third-party applications.

API Client The application controlling Entire Connection using the application programming
interface.

API Control The ActiveX used by the API client.

Terminal SessionThe terminal application of Entire Connection.

Asynchronous Non-blocking mode. The application programming interface immediately returns to
the calling application. When processing has completed, the application programming
interface sends a message to the application.

Synchronous Blocking mode. The application programming interface only returns to the calling
application when processing of the API call has completed.

1

Application Programming InterfaceEntire Connection Version 4.3.2

General Information
Each ActiveX can support a single Entire Connection terminal. Therefore, a single application can work
with as many terminal sessions as it wishes by having many controls active at one time.

Each API control can link to an existing terminal session or create a new terminal session. Each terminal
session can have one API control attached at any one time, the only exception being a terminal running in
unattended mode when attaching is not allowed. It is also impossible to set an API-controlled terminal to
unattended mode.

When a terminal session is in API mode, it is usually hidden to prevent user input. If the API makes the
terminal visible, the user has full control of the terminal, including executing procedure files and closing
down the terminal session. All data transfer operations and procedure files will still remain under the
control of the API client.

2

Entire Connection Version 4.3.2Application Programming Interface

Synchronous and Asynchronous Calls
Synchronous (blocking) and asynchronous (non-blocking) calls are available in both Visual Basic and
C++. At design time, you decide which of these two modes is appropriate.

If the control is set to asynchronous mode, nearly all API calls will return immediately with an appropriate
return code. The main exceptions to this are the functions used for initialization and closing down a
terminal session. These functions will always block regardless of the mode selected.

When the API is running asynchronously and a command completes, the control will fire a completion
event. The parameters for this event contain the completion code from the call and any data requested.

The descriptions in the Overview of API Calls below indicate when a call is only available synchronously.
In all other cases, a completion event will be fired, for example LogonEntireConnection will fire
LogonComplete .

In certain situations, the API control will also fire notification events regardless of the mode it is running
in. These can include error messages, information messages and all data transfer data.

3

Application Programming InterfaceEntire Connection Version 4.3.2

Overview of API Calls
This section provides an overview of all available API calls, grouped according to the following
functional areas:

Initialization
GetRunningTerminalSessions
Initialize
LogonEntireConnection

Opening a Session
GetAvailableSessions
OpenSession

General Control
RunHostCommand
PutData
SetDataNotificationFlag

Screen Data
GetScreenText
GetScreenRawText
GetScreenAttributes
GetExtendedAttributes
GetCursorPosition
SetCursorPosition
ClearScreenText
CheckForScreenText

Data Transfer
SetAPIFileDetails
SetWorkFileDetails
GetFileName
CancelFileTransfer

Tasks and Procedure Files
RunEntConTask
SetGlobalParameter
GetGlobalParameter
CancelRunningTask

Closing a Session
CloseSession
CloseAllSessions
BreakConnection

Other Methods
GetScreenSize

See the descriptions below for detailed information on these API calls (including associated events).

4

Entire Connection Version 4.3.2Application Programming Interface

Initialization

When starting a session, the API client can either attach to a running terminal or create a new terminal.

 To find out the session names of any running terminals (synchronous call only)

Call the following:
APIReturn = GetRunningTerminalSessions(TerminalNames, NumTerminals)

This returns an array of currently running terminals that can be attached.
GetRunningTerminalSessions is the only call that can be made before calling
Initialize .

 To attach to a terminal

Call the following:
APIReturn = Initialize(CreateSession, LinkSessionName,
UserLoggedOn, OpenSession)

The parameters are:

CreateSession Boolean
"true" indicates that a new terminal is to be created.

LinkSessionName String
The name of an existing terminal to attach to. The name is one of the
terminal names that is returned by the
GetRunningTerminalSessions function.

UserLoggedOn Boolean
Returns "true" if the logon to Entire Connection has already taken place on
the workstation. In order to use a terminal, a user has to log on once per
workstation. If UserLoggedOn is "false", the API client has to log on
now.

OpenSession String
Normally empty. In a special case, this contains the name of an open
session.

If "true" was returned for CreateSession or if it is not possible to attach to the specified terminal,
the API control creates a new session.
If the connection to an existing terminal has been established and if in the meantime a session has
been opened in this terminal, the OpenSession parameter contains the name of the session. In this
special case, the API client has to decide whether it wants to work with this session which has not
been opened under its control. This can only happen if an existing terminal is attached that is
currently in the process of opening a session, and this process takes a while and has not yet been
completed.

5

Application Programming InterfaceEntire Connection Version 4.3.2

 To log on to Entire Connection

Call the following:
APIReturn = LogonEntireConnection(UserName, Password)

6

Entire Connection Version 4.3.2Application Programming Interface

Opening a Session

The API client can either query the available session names from the share file or open a known session
directly.

 To query all sessions defined for the Entire Connection user

Call the following:
APIReturn = GetAvailableSessions(SessionNames, DefaultSession)

The parameters are:

SessionNames Variant Array(Strings)
The names of all defined sessions.

DefaultSession String
The name of the default session.

 To open one of these sessions

Call the following:
APIReturn = OpenSession(SessionName)

The parameter is:

SessionName String
The name of the session that is to be opened.

The session is now open and can be used.

Associated Events:

FirstScreenArrived
Fired when the session receives the first data from the host.
ScreenSizeChanged(NumRow, NumColumns)
Notifies the initial screen size, and also whether the terminal changes dynamically during a session.
SessionOpened(SessionName)
Fired if a session opens without the API client calling the OpenSession method. This may happen,
for example, when a startup task is used.

The parameter is:

SessionName String
The name of the open session.

7

Application Programming InterfaceEntire Connection Version 4.3.2

General Control

 To send commands to the open session

Call the following:
APIReturn = RunHostCommand(CommandName)

The parameter is:

CommandNameString
The name of the command that is to be executed on the host.

The string is sent to the host and then to the function key ENTER.

 To send general text and key codes

Call the following:
APIReturn = PutData(Text, KeyCode)

The parameters are:

Text String
The text that is to be transferred to the host.

KeyCode Integer
The key that is to be sent after the text has been transferred.

The text that is sent with this command can contain line feeds. These are interpreted as if the function
key NEWLINE has been pressed. If you only want to send a key code, you have to pass an empty
string for the text.

 To enable data notifications (synchronous call only)

Call the following:
APIReturn = SetDataNotificationFlag(Enable)

The parameter is:

Enable Boolean
When you set this to "true", data notifications are switched on. Default: off.

 To show and hide the terminal window

Set the API control property TerminalInteractive (boolean).
If you connect to a terminal, it stays visible until this value is set to "false".
If you create a new terminal, it is invisible until this value is set to "true".

8

Entire Connection Version 4.3.2Application Programming Interface

Associated Events:

CursorPositionChanged(XPosition, YPosition)
Fired when the terminal is in interactive mode and the cursor position is changed with the mouse (not
when the cursor moves due to typing).
NewScreenDataArrived()
If enabled, this indicates that new data has arrived from the host.

9

Application Programming InterfaceEntire Connection Version 4.3.2

Screen Data

Screen text is available as the raw text as it is received by the host and as the processed text as it is
displayed on the terminal. The raw text contains all characters - including those that are not to be
displayed (e.g. password) - and can contain zero values.

Since the raw text can contain zero values, it can only be returned as an array of unsigned characters. The
screen text is returned as an array of strings.

 To return screen text

Call the following:
APIReturn = GetScreenText(ScreenTextArray, TopLeftX, TopLeftY,
BottomRightX, BottomRightY)

The parameters are:

ScreenTextArray Variant Array(Strings)
One string per line of text requested.

TopLeftX Integer
Starting coordinate.

TopLeftY Integer
Starting coordinate.

BottomRightX Integer
Ending coordinate.

BottomRightY Integer
Ending coordinate.

If any of the coordinates is set to -1, the entire screen is returned.

 To return raw data

Call the following:
APIReturn = GetScreenRawText(ScreenTextArray)

The parameter is:

ScreenTextArray Variant Array(Unsigned chars)
Raw data buffer.

10

Entire Connection Version 4.3.2Application Programming Interface

 To return screen attributes

Call the following:
APIReturn = GetScreenAttributes(Attributes, AttributesDescription)

The parameters are:

Attributes Variant Array(Unsigned chars)
Attribute buffer.

AttributesDescription Variant Array(Unsigned chars)
The description of an attribute is an array of 6 values containing
the bit patterns for the attribute properties:

Member 0: Attribute

Member 1: Protected

Member 2: Numeric

Member 3: No display

Member 4: High display

Member 5: Modify data tag

 To return extended screen attributes

Call the following:
APIReturn = GetExtendedAttributes(ExtendedAttributes)

The parameter is:

ExtendedAttributes Variant Array(Unsigned chars)
Extended attribute buffer.

 To read and set the current cursor position

Call the following:
APIReturn = GetCursorPosition(XPosition, YPosition)
APIReturn = SetCursorPosition(XPosition, YPosition)

The parameters are:

XPosition Integer
X indicates the cursor position in the column.

YPosition Integer
Y indicates the cursor position in the line.

11

Application Programming InterfaceEntire Connection Version 4.3.2

 To remove all editable text in the specified area

Call the following:
APIReturn = ClearScreenText(TopLeftX, TopLeftY, BottomRightX,
BottomRightY)

The parameters are:

TopLeftX Integer
Starting coordinate.

TopLeftY Integer
Starting coordinate.

BottomRightX Integer
Ending coordinate.

BottomRightY Integer
Ending coordinate.

-1 in any value indicates the whole screen.

 To call the IF command used to check for screen text

Call the following:
APIReturn = CheckForScreenText(Text, Result, Position, TopLeftX,
TopLeftY, Length, CaseSensitive)

The parameters are:

Text String
Text to check for.

Result Boolean
"true" if the text was found.

Position Integer
Screen position where the text was found.

TopLeftX Integer
Starting coordinate.

TopLeftY Integer
Starting coordinate.

Length Integer
Text length.

CaseSensitive Boolean
True if case-sensitive check.

12

Entire Connection Version 4.3.2Application Programming Interface

Data Transfer

 To prepare for data transfer to be processed directly by the API client

Call the following:
APIReturn = SetAPIFileDetails(WorkFileNumber, UploadFlag,
BinaryFlag, ReportFlag)

The parameters are:

WorkFileNumber Integer
Work file number.

UploadFlag Boolean
Is set for upload.

BinaryFlag Boolean
Is set for binary transfer.

ReportFlag Boolean
Is set for report format.

This results in the following events being fired during upload:
GetAsciiUploadFileBuffer(ErrorCode, FileNumber, Data, DataLength,
DataFormat)
GetBinaryUploadFileBuffer(ErrorCode, WorkFileNumber, Data,
DataLength)

and the following events being fired during download:
AsciiFileDataArrived(ErrorCode, FileNumber, DataLength, Data,
DataFormat)
BinaryFileDataArrived(ErrorCode, FileNumber, DataLength, Data,
DataFormat)

The event parameters are:

ErrorCode Integer
Must be set to 0 by the API to indicate that all was processed without error.

FileNumber Integer
The work file to be processed.

DataLength Integer
Upload: the expected size is passed; the actual size is returned.
Download: is set to the size of the transmitted data.

Data Variant Arry(unsigned char)
Data that are to be transferred.

DataFormat String
Description of the record format.

13

Application Programming InterfaceEntire Connection Version 4.3.2

For a normal transfer operation, the API client has to to provide a file name. This can be done by
presetting a file name.

 To preset a file name

Call the following:
APIReturn = SetWorkFileDetails(Name, FileNumber, Upload, Binary,
Report)

The parameters are:

Name String
The file name that is to be used.

FileNumber Integer
The work file being processed.

Upload Boolean
Is set for upload.

Binary Boolean
Is set for binary transfer.

Report Boolean
Is set for report format.

If no preset values are found for the work file being processed, the API client will be asked for a file
name.

14

Entire Connection Version 4.3.2Application Programming Interface

 To return a file name

Respond to the following event:
APIReturn = GetFileName(ErrorCode, FileNumber, Upload, Binary,
ToPrinter, Landscape, ControlChars, DosFormat, FileName)

The parameters are:

ErrorCode Integer
If set to zero, the file name is used and processing starts. If set to any other
value, processing is canceled.

FileNumber Integer
Work file being processed.

Upload Boolean
Is set for uploading a file name.

Binary Boolean
Is set for binary transfer.

ToPrinter Boolean
Is set to download to a printer.

Landscape Boolean
Is set to print in landscape format.

ControlChars Boolean
Is set to interpret control characters.

FileName String
The file name to be used.

 To cancel a running data transfer

Call the following:
APIReturn = CancelFileTransfer(FileNumber)

The parameter is:

FileNumber Integer
The number of the work file for which the data transfer is to be canceled.

This call is synchronous. It queues a cancelation request. When data transfer has completed, the
FileTransferComplete event is fired.

15

Application Programming InterfaceEntire Connection Version 4.3.2

Associated Events:

FileTransferStarting(ErrorCode, FileNumber, Upload, Binary,
Headings)

The parameters are:

ErrorCode Integer
If set to zero, the file name is used and processing starts. If set to any other value,
processing is canceled.

FileNumber Integer
The work file being processed.

Upload Boolean
Is set for uploading a file name.

Binary Boolean
Is set for binary transfer.

Headings Variant Array (Strings)
Contains the field names of the record for the transfer.

FileTransferComplete(FileNumber, Upload, ErrorCode)

The parameters are:

FileNumber Integer
Work file being processed.

Upload Boolean
Is set if upload is completed.

ErrorCode Integer
Is set to zero if the data transfer was processed without error.

FileTransferProgress(ProgressMessage)

The parameter is:

ProgressMessage String
Message that normally appears in the output window of the terminal
application window.

16

Entire Connection Version 4.3.2Application Programming Interface

Tasks and Procedure Files

 To run an Entire Connection task or procedure file

Call the following:
APIReturn = RunEntConTask(TaskName)

The parameter is:

TaskName String
The name of an Entire Connection task or procedure file.

Note:
For a synchronous connection, the application programming interface returns to the calling
application after the TaskName has been checked and the task or procedure file has been started
(not when the task or procedure file is completed). For an asynchronous call, the application
programming interface immediately returns to the calling application.

 To access the global parameters +PARM0 to +PARM9

Call the following:
APIReturn = SetGlobalParameter(ParamNumber, Value)
APIReturn = GetGlobalParameter(ParamNumber, Value)

The parameters are:

ParamNumber Integer
From 0 to 9 for the required parameter.

Value String
Value of the parameter.

 To cancel a running procedure file (synchronous call only)

Call the following:
APIReturn = CancelRunningTask()

This will return immediately. The procedure file will notify termination by firing the
EntConTaskComplete event.

17

Application Programming InterfaceEntire Connection Version 4.3.2

Associated Events:

EntConTaskStarting(ErrorCode, TaskName)
Is called when a task is started other than explicitly by the application programming interface (e.g. a
logon task).

The parameters are:

ErrorCode Integer
Has to be set to 0 (zero) so that the task can be started.

TaskName String
The name of the task that has been started.

EntConTaskComplete(ErrorCode, TaskName)

The parameters are:

ErrorCode Integer
Is set to zero if the task has completed without error.

TaskName String
Task name.

TaskInputRequest(ErrorCode, DisplayOne DisplayTwo, Flags,
ReturnData)
This event is fired if an INPUT statement is executed in a procedure file.

The parameters are:

ErrorCode Integer
Is set to zero after input has been provided.

DisplayOne String
First line of prompt text.

DisplayTwo String
Second line of prompt text.

Flags Variant Array
Display flags (see below).

Flags(0) Must return some data; blank is invalid.

Flags(1) Numeric data only.

Flags(2) Password field.

Flags(3) Maximum length of the requested data.

ReturnData String
Data that are to be returned to the procedure.

18

Entire Connection Version 4.3.2Application Programming Interface

TaskDisplayMessageRequest(ErrorCode, Text, DialogBox, MessageType,
Response)
This event is fired if a WAIT statement is executed in a procedure file.

The parameters are:

ErrorCode Integer
Is set to 0 (zero) if the procedure is to continue. If zero is not set, the procedure is
canceled.

Text String
The message to be displayed.

DialogBox Boolean
"true" if a message box is expected.

MessageType Variant
Display parameters.

Response Integer
Standard Microsoft response code of the MessageBox (e.g. "IDOK") if
DialogBox is "true".

TaskError(ErrorCode, ErrorText)

The parameters are:

ErrorCode Integer
Error code from the task.

ErrorText String
Message to be displayed.

19

Application Programming InterfaceEntire Connection Version 4.3.2

Closing a Session

 To close an open session and leave the connection to Entire Connection active

Call the following:
APIReturn = CloseSession()

 To close all terminals (asynchronous call only)

Call the following:
APIReturn = CloseAllSessions()

This will close any terminal session on the workstation, including those opened directly. This call
should be used with caution. It also breaks the connection to the terminal. There is no completion
event.

 To break the link to the terminal (synchronous call only)

Call the following:
APIReturn = BreakConnection(Closedown)

The parameter is:

Closedown Boolean
Is set to "true" to close the terminal window on disconnect.

If Closedown is set to "false" and the Entire Connection terminal is not logged on, the terminal will
be closed anyway. If the terminal was hidden, it will be automatically shown when the connection is
broken.

Associated Events:

CurrentSessionClosed
The session has closed down without a request from the application programming interface. This can
happen if the terminal is interactive and the user closes the session, or if a session times out.
TerminalClosedown
The terminal has completely closed down with no request from the application programming
interface. This can happen in interactive mode if the user closes the application, or if
CloseAllSessions is called from another API session.

Other Methods

 To return the current size of the open terminal

Call the following:
APIReturn = GetScreenSize(NumberOfRows, NumberOfColumns)

20

Entire Connection Version 4.3.2Application Programming Interface

Other Events
ServerRequestedFileName(ErrorCode, OpenFile, Flags, Title,
DefExtension, Filter, InitFileName, InitDirectory, FileName)

Is called if the session needs a file name.

The parameters are:

ErrorCode Integer
Is set to zero when the file name has been set.

FileName String
The file name to be used.

The other parameters are those expected by the common open file dialog.

TerminalWarningMessage(Message, DisplayFlag)

The parameters are:

Message String
Message to be displayed.

DisplayFlag Boolean
The call is expected to show a message in a blocking dialog box (e.g. using the
MessageBox function).

Key Codes
The key codes that can be passed using PutData are contained in the include file that is provided on the
Entire Connection CD-ROM as part of the samples. Only these should be used. If other values are passed,
the effects are not defined.

Error Codes
These are all integer values. The descriptions are provided in the include files on the Entire Connection
CD-ROM as part of the code samples.

21

Application Programming InterfaceEntire Connection Version 4.3.2

	Entire Connection - Application Programming Interface
	page 2

	Table of Contents
	Application Programming Interface
	Glossary
	General Information
	Synchronous and Asynchronous Calls
	Overview of API Calls
	Initialization
	Opening a Session
	General Control
	Screen Data
	Data Transfer
	Tasks and Procedure Files
	Closing a Session
	Other Methods

	Other Events
	Key Codes
	Error Codes

